Employing Maximum Mutual Information for Bayesian Classification

نویسندگان

  • Marcel van Gerven
  • Peter J. F. Lucas
چکیده

In order to employ machine learning in realistic clinical settings we are in need of algorithms which show robust performance, producing results that are intelligible to the physician. In this article, we present a new Bayesian-network learning algorithm which can be deployed as a tool for learning Bayesian networks, aimed at supporting the processes of prognosis or diagnosis. It is based on a maximum (conditional) mutual information criterion. The algorithm is evaluated using a high-quality clinical dataset concerning disorders of the liver and biliary tract, showing a performance which exceeds that of state-of-the-art Bayesian classifiers. Furthermore, the algorithm places less restrictions on classifying Bayesian network structures and therefore allows easier clinical interpretation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of Continuous Input Variables for Binary Classification

Quantization of continuous variables is important in data analysis, especially for some model classes such as Bayesian networks and decision trees, which use discrete variables. Often, the discretization is based on the distribution of the input variables only whereas additional information, for example in form of class membership is frequently present and could be used to improve the quality o...

متن کامل

Order-based Discriminative Structure Learning for Bayesian Network Classifiers

We introduce a simple empirical order-based greedy heuristic for learning discriminative Bayesian network structures. We propose two metrics for establishing the ordering of N features. They are based on the conditional mutual information. Given an ordering, we can find the discriminative classifier structure with O (Nq) score evaluations (where constant q is the maximum number of parents per n...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Dynamic Bayesian Information Measures

This paper introduces measures of information for Bayesian analysis when the support of data distribution is truncated progressively. The focus is on the lifetime distributions where the support is truncated at the current age t>=0. Notions of uncertainty and information are presented and operationalized by Shannon entropy, Kullback-Leibler information, and mutual information. Dynamic updatings...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004